Ei 核心期刊, Scopus, CA, SA, P**米**收录期刊, 中国国际影响力优秀学术期刊

1957年创刊

硅 酸 盐 学 报

总 407 期

Guisuanyan Xuebao

(无机非金属材料)

http://www.gxyb.cbpt.cnki.net

第51卷 第2期 2023年2月,月刊

目 次

2022年度无机非金属材料学科国家自然科学基金管理工作综述 ……………………………………………………………谭业强, 郝亚楠, 赖一楠(283)

国家自然科学基金重点项目中期成果专题(特邀编辑:国家自然科学基金委员会赖一楠教授,谭业强教授)

国家自然科学基金重点项目中期成果专题一研究论文

碱金属掺杂对硫硅酸钙水化性能的影响机理

……………张文生,刘 垒,任雪红,张洪滔,叶家元,张江涛,曹立学,安 楠,钱觉时(290)

国家自然科学基金重点项目中期成果专题一综合评述

材料的过程仿生制备技术研究进展王荣杰,解晶晶,平航,	邹朝勇	,王堃,	雷丽文,	傅正义	(303)
单颗粒诊断法和高通量计算发现新型荧光粉			·李淑星,	解荣军	(318)
富勒烯及金属富勒烯的形成机理华紫辉,吴	波,	甘利华,	李 慧,	王春儒	(323)
大尺寸氧化物功能晶体的熔体结构研究进展	锋,	陈昆峰,	彭 超,	薛冬峰	(332)
高性能低维铁基材料研究现状及生物医用前景毛	宇,	王鉴,	黄 晓,	顾 宁	(345)
钾离子电池关键电极材料精细结构调控及先进原位表征	铖,	肖治桐,	王选朋,	麦立强	(354)

机器学习在材料研发中的应用专题(上海大学:施思齐教授)

机器学习在材料研发中的应用专题一编者按

机器学习在材料研发中的应用专题一研究论文

机器学习在材料研发中的应用专题一综合评述

面向材料领域机器学习的数据质量治理刘 悦,马舒	畅,杨正伟,邹欣欣,施思齐(427)
基于机器学习的电化学能源电池宏微观设计李金金,蔡俊飞,韩彦	强,汪志龙,陈 安,叶思敏(438)
基于机器学习探索钙钛矿材料及其应用胡 扬,张胜利,周文瀚,刘高	豫,徐丽丽,尹万健,曾海波(452)
机器学习原子势在锂金属负极中的应用赖根明, 焦君宇	,蒋 耀,郑家新,欧阳楚英(469)
基于机器学习势函数的原子模拟软件的开发及应用	······商 城,康沛林,刘智攀 (476)
机器学习在锂电池固态电解质研究中的应用	翔,富忠恒,高宇辰,张 强(488)
机器学习在热电材料领域中的应用	盛晔,宁金妍,杨炯(499)
机器学习辅助的纳米催化反应动力学研究进展林 博,张双	哲,李 白,周 川,李 磊(510)
二维材料催化活性描述符的研究进展	······李嘉辉,练 成,刘洪来 (520)

基于机器学习势函数的材料力热性质多尺度模拟研究进展

JOURNAL OF THE CHINESE CERAMIC SOCIETY

Guisuanyan Xuebao

(Inorganic and Non-metallic Materials) http://www.gxyb.cbpt.cnki.net

Total No. 407

February, 2023

Vol. 51, No. 2, Monthly

CONTENTS

Review on Inorganic Nonmetallic Materials of National Natural ScienceFoundation of China in 2022
TAN Yeqiang, HAO Yanan, LAI Yinan (283)
Special Issue on Inerim Achievement of Key Program of National Natural Science Foundation of China (Guest Editor:
Professor LAI Yinan, Professor TAN Yeqiang, National Science of Foundation of China)
Special Issue on Inerim Achievement of Key Program of National Natural Science Foundation of China—Research Articles
Alkali Metal Doping Influence on Hydration Properties of Ternesite
ZHANG Wensheng, LIU Lei, REN Xuehong, ZHANG Hongtao, YE Jiayuan, ZHANG Jiangtao, CAO Lixue, AN Nan,
QIAN Jueshi (290)
Special Issue on Inerim Achievement of key Program of National Natural Science Foundation of China—Review
Research Progress on Bioprocessing-Inspired Fabrication Technology of Materials
WANG Rongjie, XIE Jingjing, PING Hang, ZOU Zhaoyong, WANG Kun, LEI Liwen, FU Zhengyi (303)
Discovering Novel Phosphors by Single-Particle Diagnosis and High-Throughput Calculations
LI Shuxing, XIE Rongjun (318)
Formation Mechanism of Fullerenes and Metallofullerenes
Recent Advances and Perspectives on Melt Structures of Large-Size Functional Oxide Crystals
LIU Feng, CHEN Kunfeng, PENG Chao, XUE Dongfeng (332)
High-Performance and Low-Dimensional Iron Based Materials and Their Prospects for Biomedical Applications
MAO Yu, WANG Jian, HUANG Xiao, GU Ning (345)
Fine Structure Tuning and Advanced In Situ Characterization of Key Electrode Materials for Potassium-Ion Batteries
HAN Kang, ZHOU Cheng, XIAO Zhitong, WANG Xuanpeng, MAI Liqiang (354)
Application of Machine Learning in Material Research & Development (Guest Editor: Professor SHI Siqi, Shanghai
University)
Application of Machine Learning in Material Research & Development—Editorial Note
Application of Machine Learning in Materials Research & Development
Application of Machine Learning in Material Research & Development—Research Articles
Discovering ABO3-Type Perovskite with High Dielectric Constant via Unsupervised Learning

Failure Mode of Thermal Barrier Coatings Based on Acoustic Emission Under Three-Point Bending via Machine Learning Based on
in-situ Acoustic Emission Signals
CAO Zhijun, YUAN Jianhui, SU Huaiyu, WAN Jiabao, SU Jiahui, WU Qian, WANG Liang (373)
A Framework for Metal Surface Energy Prediction Based on Crystal Graph Convolutional Neural Network
Machine Learning for the Bandgap of Organic-Inorganic Hybrid Perovskites with Voronoi Structure Representation
WANG Jingzhou, OUYANG Runhai (397)
A Quantitative Noise Method to Evaluate Machine Learning Algorithm on Multi-Fidelity Data
LIU Xiaotong, WANG Ziming, OUYANG Jiahua, YANG Tao (405)
Discovering High-Temperature Conventional Superconductors via Machine Learning
CUI Zhiqiang, LUO Ying, ZHANG Yunwei (411)
Prediction of Original Ingredients of Portland Glass and Research into Subclassification Methods Based on Machine Learning
WANG Zhihao, ZHAO Xingwei, LI Zhiqun, GUO Ming, XIAO Wanyue, LIU Zhijan (416)
Application of Machine Learning in Material Research & Development—Review
A Data Quality and Quantity Governance for Machine Learning in Materials Science
Macro-/Micro-Design of Electrochemical Energy Battery Based on Machine Learning
LI Jinjin, CAI Junfei, HAN Yanqiang, WANG Zhilong, CHEN An, YE Simin (438)
Studies on Perovskite Material and Its Applications via Machine Learning
Analysis of Li Metal Anode by Machine Learning Potential
LAI Genming, JIAO Junyu, JIANG Yao, ZHENG Jiaxin, OUYANG Chuying (469)
Development and Application of Atomic Simulation Software Based on Machine Learning Potentials
SHANG Cheng, KANG Peilin, LIU Zhipan (476)
Machine Learning in Lithium Battery Solid-State Electrolytes
CHEN Xiang, FU Zhong-Heng, GAO Yu-Chen, ZHANG Qiang (488)
Applications of Machine Learning in Thermoelectric Materials
Application of Machine-Learning Assisted Dynamics Simulations in Nano-Scale Catalysis
LIN Bo, ZHANG Shuangzhe, LI Bai, ZHOU Chuan, LI Lei (510)
Research Progress on Heterogeneous Catalytic Reaction Activity Descriptors for Two-Dimensional Materials
LI Jiahui, LIAN Cheng, LIU Honglai (520)
Multi-Scale Simulation of Mechanical and Thermal Transport Properties of Materials Based on Machine Learning Potential
WU Jing, HUANG An, XIE Hanpeng, WEI Donghai, LI Aonan, PENG Bo, WANG Huimin, QIN Zhenzhen,
LIU Te-huan, QIN Guangzhao (531)
Progress on Active Learning Assisted Materials Discovery WANG Yunfan, TIAN Yuan, ZHOU Yumei, XUE Dezhen (544)
Review on Machine Learning Accelerated Crystal Structure Prediction
LUO Xiaoshan, WANG Zhenyu, GAO Pengyue, ZHANG Wei, LV Jian, WANG Yanchao (552)