

化学进展 Progress in Chemistry

Vol.34 | No.9 | 2022

生物酶驱动的微纳米马达 在生物医学领域的应用

主 管:中国科学院

主 办:中国科学院基础科学局

中国科学院化学部

中国科学院文献情报中心

国家自然科学基金委员会化学科学部

目次

2022年9月 第34卷 第9期(总第269期)

♦	中	国	¥.	学	ED	记
----------	---	---	----	---	----	---

具有全色	2发光的	非芳香聚 』	马来酰亚	按		1879
朱天文	袁望章					
◆ 综述						
一类东东	三本 一 	₩ 6th 시스 6± t	51.65 (11.55)	组装及应)	=	1882
				沮衣及应)	77	1002
王克青	辞慧敏	秦晨晨	崔 巍			
· 钯铜纳米	₹电催化剂	羽的制备フ	方法及应)	用		1896
叶淳懿	杨洋	邹学紧	丁 蓝	骆静利	符显珠	
1 1.7	120 11	34.3 W	• 7	AB 91 / 1 4	11 11/11	
多功能权	亥売结构 组	内米反应	器的构筑	及其催化忖	生能	1911
陈浩	徐 旭	焦超男	杨浩	王 静	彭银仙	
微塑料:	生物效应	立、分析和	印降解方	法综述		1935
周丽	Yasmin	e Abdelkri	m 姜志	国 于中	振 曲 晋	
				. —	–	
盐包合材	f料在高 流	温熔盐体 源	系中的合用	成及其潜	生 应用	1947
张 旭	张 蕾	黄善恩	柴之芳	石伟群		
华 业 台: /	TTT \ #22	. 사뉴 무슨 무슨 교육		2 TZ ct: EH		1957
`		物抗肿瘤	101年1075	(及)) 四		1957
颇顺心	姜 琴	施鵬飞				
磁碱酯法	ś 前茲的:	合成方法 -	三応田			1972
		•		朱园园	上加吉	17/2
共白干	奶 沙	生子丁	尔 茄	不四四	· 人人	
电喷印品	引柔性传 点	救器				1982
			邬福明	杨辉	胡文平	
/	,	3 -144 -144	v; (14 / 3	1/4 /**	74 I	

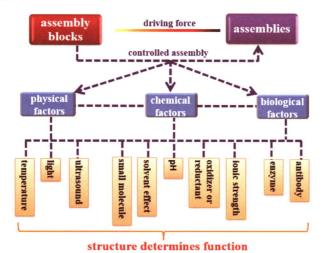
圆偏振发光性质的热活化延迟荧光材料及电致发光器件 1									1996				
于	兰	薛沛	然	李欢	た欢	陶	冶	陈润	锋	黄	维		
基于	液晶	聚合	物的	光到	放形变	复合	材料	4					2012
黄	帅	陶	钰	黄银	k亮								
基于	- 1.8	- 萘酉	铣亚角	安的:	多分	折物图	荧光 :	探针的	内构系	建和	应用		2024
	•	谢振						周					
生物	1酶弧	法协约	微级	∦ ⊑	认大有	生物	医学	领域	的应	用			2035
	-	王		_				1,000	, n , , , , , , , , , , , , , , , , , ,	-,,,			
幼座	工 活	合电	灾哭	由机	法大士	16分科	[空注	: 屈					2051
		•							1.	100	V		2031
凩	琦	徐佩	珠	田志	、东	孙	伟	刘杨	杰	胡	翔		
二维	钙钛	矿光	:伏器	件									2063
姬	超	李	拓	邹晓	峰	张	璐	梁春	军				
铁基材料改性零价铝的作用机制及应用									2081				
杨世	迎	李乾	凤	旲	随	张维	银						
大气	中的]单环	芳香	族硝	基化	(合物	I						2094
薛宗	`涵	马	楠	王炐	罡								
基于碳点的发光材料在潜在手印显现中的应用								2108					
袁传	军	王	猛	李	明	包金	- 鹏	孙鹏	瑞	高荣	轩		

PROGRESS IN CHEMISTRY (Monthly)

Vol.34 No.9 September 2022 (Series Number 269)

CONTENTS

Imprint of Chinese Chemistry


Nonaromatic Polymaleimides with Full-Color Photoluminescence

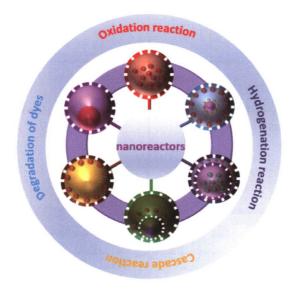
Tianwen Zhu, Wang Zhang Yuan
Progress in Chemistry, 2022, 34(9): 1879~1881
DOI:10.7536/PC220715

Review

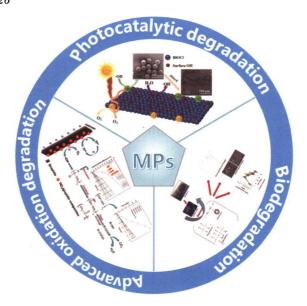
Controllable Assembly of Diphenylalanine Dipeptide Micro/Nano Structure Assemblies and Their Applications

Keqing Wang, Huimin Xue, Chenchen Qin, Wei Cui Progress in Chemistry, 2022, 34(9): 1882~1895 DOI:10.7536/PC211206

External factors affecting the assembly process and the significance of controllable assembly for various of structures and applications.


Preparation and Application of Palladium-Copper Nano Electrocatalysts

Chunyi Ye, Yang Yang, Xuexian Wu, Ping Ding, Jingli Luo, Xianzhu Fu Progress in Chemistry, 2022, 34(9): 1896~1910 DOI:10.7536/PC211028


Fabrication of Multifunctional Core-Shell Structured Nanoreactors and Their Catalytic Performances

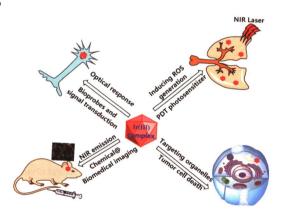
Hao Chen, Xu Xu, Chaonan Jiao, Hao Yang, Jing Wang, Yinxian Peng Progress in Chemistry, 2022, 34(9): 1911~1934 DOI:10.7536/PC211101

Microplastics: A Review on Biological Effects, Analysis and Degradation Methods

Li Zhou, Abdelkrim Yasmine, Zhiguo Jiang, Zhongzhen Yu, Jin Qu Progress in Chemistry, 2022, 34(9):1935~1946 DOI:10.7536/PC211226

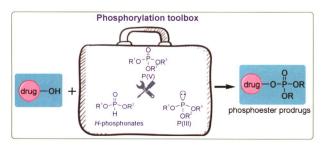
Preparation of Salt-Inclusion Materials in High-Temperature Molten Salt System and Their Potential Application

Xu Zhang, Lei Zhang, Shanen Huang, Zhifang Chai, Weiqun Shi Progress in Chemistry, 2022, 34(9): 1947~1956 DOI:10.7536/PC211125



Antitumor Activity and Application of Luminescent Iridium(III) Complexes

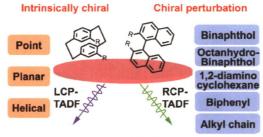
Shunxin Gu, Qin Jiang, Pengfei Shi


Progress in Chemistry, 2022, 34(9): 1957~1971

DOI:10.7536/PC211129

Synthetic Methods and Application of Phosphoester Prodrugs

Zhihua Gong, Sha Hu, Xueping Jin, Lei Yu, Yuanyuan Zhu, Shuangxi Gu Progress in Chemistry, 2022, 34(9): 1972~1981 DOI:10.7536/PC211207

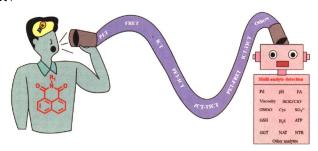

Flexible Sensors Based on Electrohydrodynamic Jet Printing

Jiyang Lu, Tiantian Wang, Xiangxiang Li, Fuming Wu, Hui Yang, Wenping Hu Progress in Chemistry, 2022, 34(9): 1982~1995 DOI:10.7536/PC211217

Circularly Polarized Thermally Activated Delayed Fluorescence Materials and Their Applications in Organic Light-Emitting Devices

Lan Yu, Peiran Xue, Huanhuan Li, Ye Tao, Runfeng Chen, Wei Huang Progress in Chemistry, 2022, 34(9): 1996~2011 DOI:10.7536/PC210818

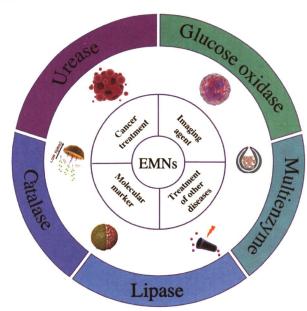
Circularly polarized luminescence


Photodeformable Composite Materials Based on Liquid Crystalline Polymers

Shuai Huang, Yu Tao, Yinliang Huang Progress in Chemistry, 2022, 34(9): 2012~2023 DOI:10.7536/PC211103

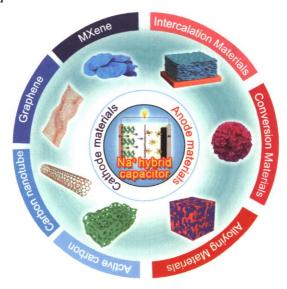
Construction and Application of 1,8-Naphthalimide-Based Multi-Analyte Fluorescent Probes

Yanqin Lai, Zhenda Xie, Manlin Fu, Xuan Chen, Qi Zhou, Jin-Feng Hu Progress in Chemistry, 2022, 34(9): 2024~2034 DOI:10.7536/PC211117

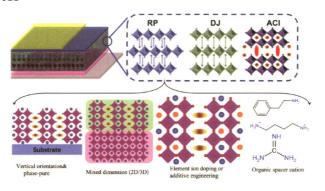


Biomedical Applications of Enzyme-Powered Micro/Nanomotors

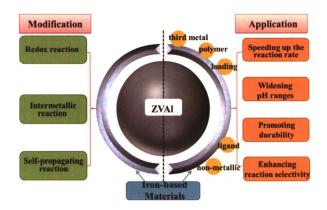
Dang Zhang, Xi Wang, Lei Wang


Progress in Chemistry, 2022, 34(9): 2035~2050

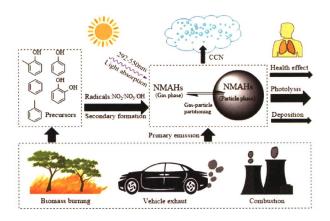
DOI:10.7536/PC211110


Recent Advances of the Electrode Materials for Sodium-Ion Capacitors

Qi Qi, Peizhu Xu, Zhidong Tian, Wei Sun, Yangjie Liu, Xiang Hu Progress in Chemistry, 2022, 34(9): 2051~2062 DOI:10.7536/PC220121

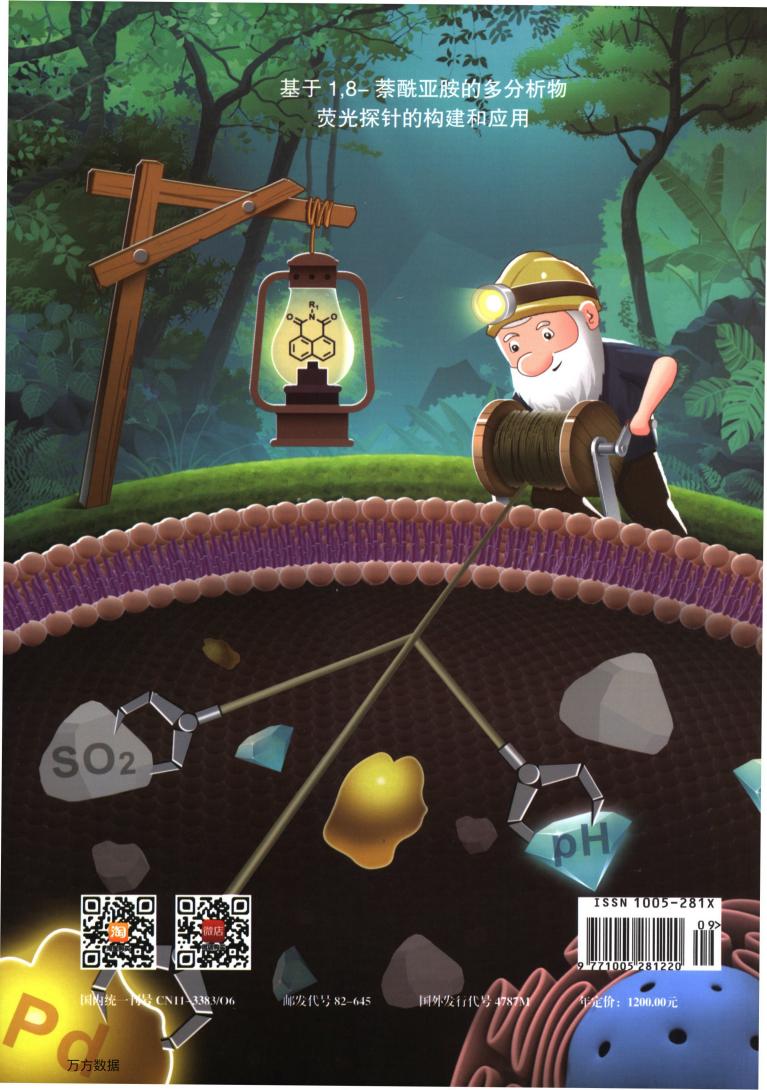

Two-Dimensional Perovskite Photovoltaic Devices

Chao Ji, Tuo Li, Xiaofeng Zou, Lu Zhang, Chunjun Liang Progress in Chemistry, 2022, 34(9): 2063~2080 DOI:10.7536/PC211022


Mechanisms and Applications of Zero-Valent Aluminum Modified by Iron-Based Materials

Shiying Yang, Qianfeng Li, Sui Wu, Weiyin Zhang Progress in Chemistry, 2022, 34(9): 2081~2093 DOI:10.7536/PC211102


Nitrated Mono-Aromatic Hydrocarbons in the Atmosphere


Zonghan Xue, Nan Ma, Weigang Wang Progress in Chemistry, 2022, 34(9): 2094~2107 DOI:10.7536/PC211215

Application of Luminescent Materials Based on Carbon Dots in Development of Latent Fingerprints

Chuanjun Yuan, Meng Wang, Ming Li, Jinpeng Bao, Pengrui Sun, Rongxuan Gao Progress in Chemistry, 2022, 34(9): 2108~2120 DOI:10.7536/PC211223

