QK2247627

ISSN 1998-0124 CN 11-5974/O4

December · 2022 Volume 15 · Number 12 Research

Suzuki cross-coupling reactions over engineered AuPd alloy nanoparticles by recycling scattered light Homogeneous nitrogen-doped (111)-type layered SteNbxOve-xNx as a visible-light-responsive photocatalyst for water oxidation

Recent advances in nature-inspired nanocatelytic reduction of organic molecules with water

Young Innovators Awards in NanoCatalysis 2022

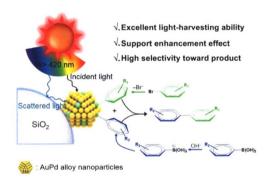
Special Issue-NR45

ISSN 1998-0124

Contents

Editorial

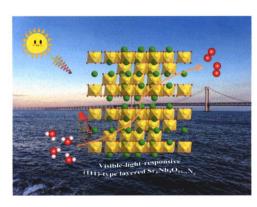
The Nano Research Young Innovators (NR45) Awards in nanocatalysis


Tierui Zhang^{1,2,*}, Shuangyin Wang^{3,*}, and Ding Ma^{4,*}

9961-9966

Suzuki cross-coupling reactions over engineered AuPd alloy nanoparticles by recycling scattered light

Ming-Yu Qi¹, Hua-Kun Wu¹, Masakazu Anpo², Zi-Rong Tang¹, and Yi-Jun Xu^{1,*}


9967-9975

By means of using both incident and scattered photons based on the near-field scattering light-promoted optical absorption model, AuPd alloy nanoparticles have been rationally engineered by loading onto the spherical SiO₂ support to improve their light-harvesting capability toward photocatalytic Suzuki cross-coupling synthesis.

Homogeneous nitrogen-doped (111)-type layered $Sr_5Nb_4O_{15-x}N_x$ as a visible-light-responsive photocatalyst for water oxidation

Shiwen Du¹, Hai Zou^{1,2}, Yunfeng Bao¹, Yu Qi¹, Xueshang Xin^{1,2}, Shuowen Wang¹, Zhaochi Feng¹, and Fuxiang Zhang^{1,*}

Novel homogeneous nitrogen-doped (111)-type layered perovskite oxynitride $(Sr_5Nb_4O_{15-x}N_x)$ is directly synthesized using a thermal ammonolysis method, which exhibits an enhanced photocatalytic oxygen (O_2) evolution activity from water splitting under visible-light illumination ($\lambda > 420$ nm) after loading with cobalt oxide (CoO_x) as cocatalyst.

¹ Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, China

² University of Chinese Academy of Sciences, China

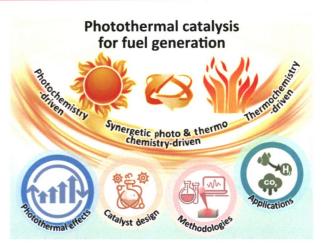
³ Hunan University, China

⁴ Peking University, China

¹ Fuzhou University, China

² Osaka Prefecture University, Japan

¹ Dalian Institute of Chemical Physics, Chinese Academy of Sciences, China


² University of Chinese Academy of Sciences, China

Advances of photothermal chemistry in photocatalysis, thermocatalysis, and synergetic photothermocatalysis for solar-to-fuel generation

Minmin Gao1, Tianxi Zhang1, and Ghim Wei Ho1,2,*

- ¹ National University of Singapore, Singapore
- ² Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), Singapore

9985-10005

This article aims to provide a comprehensive review of the benefits of photothermal catalysis for fuel generation, along with a guide for understanding its mechanisms, rational material designs, characterization techniques and current applications.

Highly efficient and anti-poisoning single-atom cobalt catalyst for selective hydrogenation of nitroarenes

Yuemin Lin¹, Renfeng Nie³, Yuting Li², Xun Wu², Jiaqi Yu², Shaohua Xie⁴, Yajing Shen^{1,5}, Shanjun Mao⁴, Yuzhuo Chen⁴, Dan Lu¹, Zongbi Bao^{1,5}, Qiwei Yang^{1,5}, Qilong Ren^{1,5}, Yiwen Yang^{1,5}, Fudong Liu⁴, Long Qi^{2,*}, Wenyu Huang^{3,*}, and Zhiguo Zhang^{1,5,*}

- ¹ Zhejiang University, China
- ² Iowa State University, USA
- ³ Zhengzhou University, China
- ⁴ University of Central Florida, USA
- ⁵ Institute of Zhejiang University-Quzhou, China

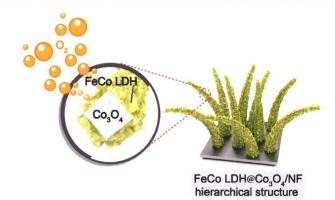
10006-10013

R=-C=C, -CN, -COCH₃, -OCH₃, -CI, -Br, -I High activity > 99% selectivity Mild conditions

A novel single-atom cobalt catalyst (Co-NAC) was developed to selectively reduce functionalized nitroarenes to corresponding amines under mild conditions. Co-NAC catalyst affords high activity, > 99% selectivity and superior resistance towards sulfur-containing poisons (20 equivalents), showing great potential in the chemical industry.

Ir single atoms modified Ni(OH)₂ nanosheets on hierarchical porous nickel foam for efficient oxygen evolution

Chunxu Jia^{1,2}, Hao Qin^{1,2}, Chao Zhen^{1,*}, Huaze Zhu^{1,2}, Yongqiang Yang¹, Ali Han¹, Lianzhou Wang³, Gang Liu^{1,2,*}, and Hui-Ming Cheng^{1,4}

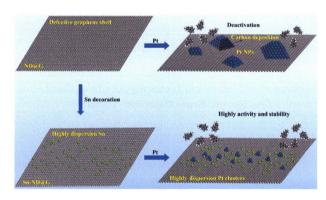

- ¹ Institute of Metal Research, Chinese Academy of Sciences, China
- ² University of Science and Technology of China, China
- ³ The University of Oueensland, Australia
- ⁴ Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, China

A feasible one-step electrodeposition method was developed to fabricate Ir single atoms modified Ni(OH)₂ nanosheets on a hierarchical porous nickel substrate as oxygen evolution reaction (OER) electrode for efficient electrochemical water splitting.

Constructing hierarchical nanosheet-on-microwire FeCo LDH@Co₃O₄ arrays for high-rate water oxidation

Tang Tang 1,2 , Zhe Jiang 1,2 , Jun Deng 3 , Shuai Niu 1,2 , Ze-Cheng Yao 1,2 , Wen-Jie Jiang 1 , Lin-Juan Zhang 4,5 , and Jin-Song Hu 1,2,5,*

- ¹ Institute of Chemistry, Chinese Academy of Sciences, China
- ² University of the Chinese Academy of Sciences, China
- ³ Institute of Physics, Chinese Academy of Sciences, China
- ⁴ Shanghai Institute of Applied Physics, Chinese Academy of Sciences, China
- ⁵ Dalian National Laboratory for Clean Energy, China

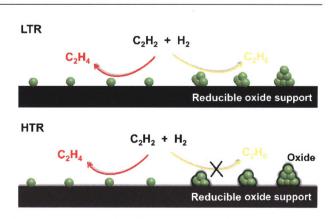

A Fe³⁺ induced nanosizing strategy is developed to fabricate hierarchical nanosheet-on-microwire FeCo LDH@Co₃O₄ (LDH: layered double hydroxide) electrocatalysts with abundant highly-active and durable catalytic sites for high-rate water oxidation. It demonstrates an oxygen evolution reaction (OER) current density of 1,000 mA·cm⁻² at a small overpotential of 392 mV.

10021-10028

Fully-exposed Pt clusters stabilized on Sn-decorated nanodiamond/graphene hybrid support for efficient ethylbenzene direct dehydrogenation

Linlin Wang^{1,2}, Xuetao Qin³, Ting Sun^{1,*}, Xiangbin Cai⁴, Mi Peng³, Zhimin Jia^{2,5}, Xiaowen Chen^{2,5}, Ning Wang⁴, Jiangyong Diao^{2,*}, Hongyang Liu^{2,5,*}, and Ding Ma³

- ¹ Northeastern University, China
- ² Institute of Metal Research, Chinese Academy of Sciences, China
- ³ Peking University, China
- ⁴ Hong Kong University of Science and Technology, Hong Kong, China
- ⁵ University of Science and Technology of China, China


The fully-exposed Pt clusters were fabricated on the Sn-decorated nanodiamond/graphene (Pt/Sn-ND@G) hybrid support, and exhibited higher yields and better stability in the direct dehydrogenation of ethylbenzene to styrene, in comparison with the typical Pt nanoparticles.

10029-10036

Pd single-atom catalysts derived from strong metal-support interaction for selective hydrogenation of acetylene

Yalin Guo^{1,2}, Yangyang Li^{1,2}, Xiaorui Du³, Lin Li¹, Qike Jiang^{1,*}, and Botao Qiao^{1,*}

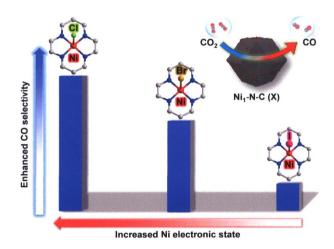
- ¹ Dalian Institute of Chemical Physics, Chinese Academy of Sciences, China
- ² University of Chinese Academy of Sciences, China
- ³ Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, China

Pd single-atom catalysts (SACs) were fabricated by a simple strategy, reducing supported Pd catalysts at suitable temperatures to selectively encapsulate the co-existed Pd nanoparticles (NPs)/clusters, which exhibit much higher selectivity and stability in semi-hydrogenation of acetylene.

Fundamental aspects of alkyne semi-hydrogenation over heterogeneous catalysts

Zhe Wang, Qian Luo, Shanjun Mao, Chunpeng Wang, Jingi Xiong, Zhirong Chen, and Yong Wang*

Zhejiang University, China

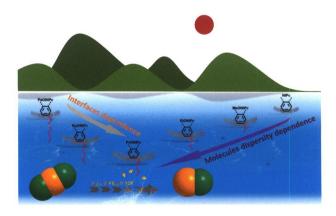

A fundamental viewpoint about how to acquire alkenes with high efficiency in alkyne hydrogenation was provided.

10044-10062

Axial coordination regulation of MOF-based singleatom Ni catalysts by halogen atoms for enhanced CO_2 electroreduction

Jia-Xin Peng¹, Weijie Yang², Zhenhe Jia², Long Jiao^{1,*}, and Hai-Long Jiang^{1,*}

- ¹ University of Science and Technology of China, China
- ² North China Electric Power University, China

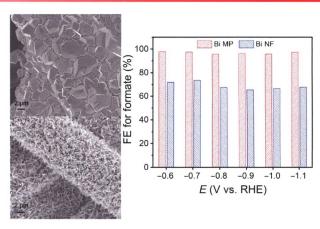

A series of single-atom Ni catalysts with different axial coordination halogen atoms are successfully constructed. They demonstrate enhanced CO selectivity with the increase of Ni electronic states regulated by the halogen species in electrocatalytic CO_2 reduction.

10063-10069

Surveying the electrocatalytic CO₂-to-CO activity of heterogenized metallomacrocycles via accurate clipping at the molecular level

Meng-Ke $\mathrm{Hu}^{1,2}$, Ning $\mathrm{Wang}^{1,2}$, Dong-Dong $\mathrm{Ma}^{1,^*}$, and Qi-Long $\mathrm{Zhu}^{1,2,3,^*}$

- ¹ Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, China
- ² Fuzhou University, China
- ³ Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, China


The alkyl chains of immobilized nickel phthalocyanines regulate the dispersibility and heterointerfaces and thus the electrocatalytic $\rm CO_2$ -to-CO activity with a volcano-type trend.

Electrodeposited highly-oriented bismuth microparticles for efficient CO₂ electroreduction into formate

Chen Lin, Yan Liu, Xiangdong Kong, Zhigang Geng^{*}, and Jie Zeng^{*}

University of Science and Technology of China, China

10078-10083

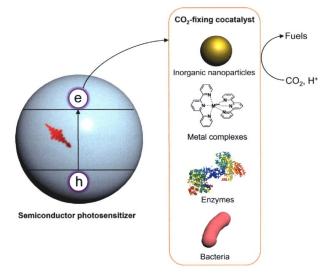
While Bi microparticles (MP) possess lower specific surface area than Bi nanoflakes (NF), Bi MP exhibited better catalytic performance. The different exposed surfaces lead to such results.

A water-stable organolead iodide material for overall photocatalytic CO₂ reduction

Rong Chen, Guodong Gao, and Jingshan Luo*

Nankai University, China

CO₂

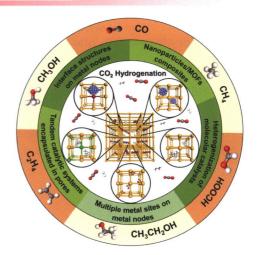

The 0.19 wt.‰ Au nanoparticles mediated water-stable perovskite-like organolead iodide crystalline material ([Pb₈I₈(H₂O)₃]⁸⁺[$^{-}$ O₂C(CH₂)₄ CO₂ $^{-}$]₄) (TJU-16) exhibited photocatalytic CO and CH₄ production rate of 2.5 and 10.1 μ mol·g $^{-1}$ ·h $^{-1}$ respectively in water under AM 1.5G simulated illumination for photocatalytic CO₂ reduction without sacrificial reagent, and achieved a solar-to-fuel conversion efficiency of 0.034%.

10084-10089

Advances and challenges in developing cocatalysts for photocatalytic conversion of carbon dioxide to fuels

Qian Wang^{1,*} and Zhenhua Pan²

- ¹ Nagoya University, Japan
- ² Chuo University, Japan

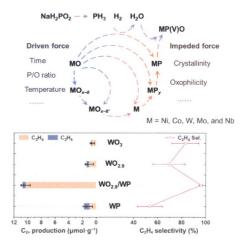


Heterogeneous solar fuel production systems are multi-component, comprising photosensitizer and catalytic unit, which is termed "cocatalyst". This review presents a comprehensive summary of the recent advancements in cocatalysts for photocatalytic $\rm CO_2$ reduction to provide new insights and guidance to the field with regard to research directions and best practices.

Recent advances in metal-organic frameworks for catalytic CO₂ hydrogenation to diverse products

Shengxian Shao^{1,2}, Chengqian Cui^{1,2}, Zhiyong Tang^{1,2}, and Guodong Li^{1,2,*}

10110-10133

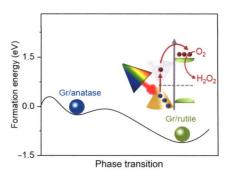

With the well-defined reticular frameworks and flexible modifiability, metal-organic frameworks (MOFs) can be the ideal platform to construct the enabled catalysts for CO₂ hydrogenation with the enhancement of catalytic activity and precise control of selectivity. In this review, we systematically summarize the recent advances on MOFs based catalysts for selective CO₂ hydrogenation towards diverse products.

Mechanistic insight into the controlled synthesis of metal phosphide catalysts from annealing of metal oxides with sodium hypophosphite

Fanpeng Chen, Bohang Zhao, Mengyao Sun, Cuibo Liu, Yanmei Shi, Yifu Yu, and Bin Zhang

Tianjin University, China

10134-10141



The antagonism of the driven and impeded forces (time, P/O ratio, temperature, crystallinity, and oxophilicity) is reported to determine the composition of various products (e.g., metal oxide (MO), $MO_{x-\delta}$, $MO_{x-\delta}$ -MP_y, MP_y, MP, and MPO) for the phosphorization synthesis of metal oxides. As a proof-of-concept application, the as-synthesized $WO_{2.9}$ /WP exhibits greatly improved photocatalytic oxidative performance toward the coupling of methane, outperforming WO_3 , $WO_{2.9}$, and WP counterparts.

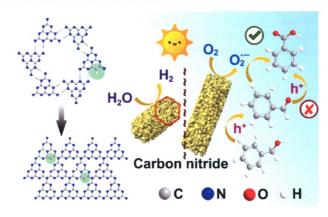
Rapidly and mildly transferring anatase phase of graphene-activated TiO₂ to rutile with elevated Schottky barrier: Facilitating interfacial hot electron injection for Vis–NIR driven photocatalysis

Weiyao Hu¹, Qiyuan Li¹, Dong Xu¹, Guangyao Zhai¹, Shinan Zhang¹, Dong Li², Xiaoxiao He², Jinping Jia¹, Jiesheng Chen¹, and Xinhao Li^{1,*}

10142-10147

We developed a mild but fast phase transfer method for the synthesis of graphene/rutile heterojunctions to promote the hot electron injected at the interface and final H₂O₂ production under visible—near infrared ray (Vis–NIR) light irradiation.

¹ National Center for Nanoscience and Technology, China


² University of Chinese Academy of Sciences, China

¹ Shanghai Jiao Tong University, China

² East China Normal University, China

Aromatic alcohols oxidation and hydrogen evolution over π -electron conjugated porous carbon nitride rods

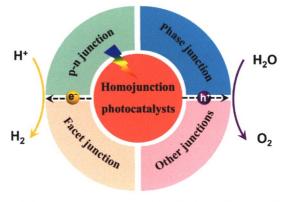
Jiawei Xia^{1,2}, Neeta Karjule², Gabriel Mark², Michael Volokh², Haigun Chen¹, and Menny Shalom^{2,*}

Melem and a co-monomer (carbon-rich substituted melem) construct a supramolecular assembly to synthesize carbon-doped porous carbon nitride (CN) rods with extended π -electron conjugation. The optimal CN material shows excellent photocatalytic activity towards hydrogen evolution reaction via water splitting and selective oxidation reaction of aromatic alcohols.

10148-10157

Shedding light on the role of interfacial chemical bond in heterojunction photocatalysis

Yueshuang Mao¹, Pengfei Wang^{2,*}, and Sihui Zhan^{1,*}



Interfacial chemical bonds act as specific "bridge" for reducing the electron transfer distance and driving interfacial charge transfer directionally in heterojunction photocatalysis. This article reviewed the design strategies, characterization techniques, applications and the future perspectives for interfacial chemical bonds.

10158-10170

Homojunction photocatalysts for water splitting

Xiangjiu Guan^{1,2}, Shichao Zong³, and Shaohua Shen^{1,*}

Methods for the construction of homojunction-based photocatalyst and the recent progress in water splitting are summarized and discussed.

¹ Changzhou University, China

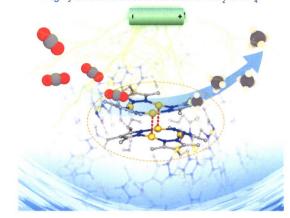
² Ben-Gurion University of the Negev, Israel

¹ Nankai University, China

² Hebei University of Technology, China

¹ Xi'an Jiaotong University, China

² Suzhou Academy of Xi'an Jiaotong University, China


³ Chang'an University, China

Porous copper cluster-based MOF with strong cuprophilic interactions for highly selective electrocatalytic reduction of CO₂ to CH₄

Long-Zhang Dong^{1,2}, Yun-Feng Lu², Rui Wang², Jie Zhou¹, Yu Zhang², Lei Zhang¹, Jiang Liu^{1,2}, Shun-Li Li^{1,2}, and Ya-Qian Lan^{1,2,*}

10185-10193

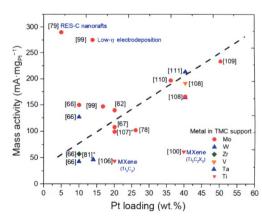
Highly selective electroreduction of CO2 to CH4

A copper cluster-based metal-organic framework (MOF) stabilized by cuprophilic interactions was constructed and utilized for highly efficient electrocatalytic CO₂ reduction to CH₄ in a gas diffusion flow cell. The high faradaic efficiencies can be attributed to the favorable combination of the pore channel and the enhanced cuprophilic interactions.

Crystal phase engineering of electrocatalysts for energy conversions

Hui Chen¹, Mingcheng Zhang¹, Yanfei Wang², Ke Sun¹, Lina Wang¹, Zhoubing Xie¹, Yucheng Shen¹, Xindi Han¹, Lan Yang^{1,*}, and Xiaoxin Zou^{1,*}

Phase engineering


Theoretical and experimental advances made in phase engineering of electrocatalysts are summarized. Basic understanding on crystal phases and phase-controlled synthesis of electrocatalysts are introduced. Phase-activity relationship in different kinds of electrocatalysts and future directions of phase design are discussed.

10194-10217

Transition metal carbides as cathode supports for PEM fuel cells

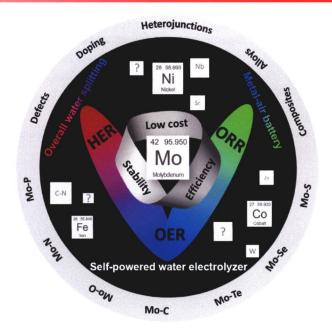
Eliran R. Hamo and Brian A. Rosen*

Tel Aviv University, Israel

This review provides an overview of progress towards improving the activity and durability of transition metal carbides as catalyst supports for the cathode of proton exchange membrane fuel cells.

¹ South China Normal University, China

² Nanjing Normal University, China


¹ Jilin University, China

² Petrochina Petrochemical Research Institute, China

Emerging noble metal-free Mo-based bifunctional catalysts for electrochemical energy conversion

Saswati Santra, Verena Streibel, and Ian D. Sharp*

Technical University of Munich, Germany

Molybdenum-based systems are attracting considerable interest as bifunctional electrocatalysts capable of supporting hydrogen evolution reaction/oxygen evolution reaction (HER/OER) and oxygen reduction reaction (ORR)/OER for application in overall water splitting cells and metal-air batteries. This article reviews and analyses the progress and future prospects for this versatile class of Mo-based catalytic compounds, composites, and heterostructures. The strategies and mechanisms underlying these achievements can support the development of a next generation of sustainable, scalable, and efficient noble metal-free electrocatalysts.

10234-10267

Noble-metal free plasmonic nanomaterials for enhanced photocatalytic applications—A review

Jinghua Li¹, Yiming Zhang¹, Yalong Huang¹, BingLuo ², Li Jing¹, and Dengwei Jing¹,

Xi'an Jiaotong University, China

This paper reviews the fundamental principles and classification of the localized surface plasmon resonance (LSPR) effect of noble-metal free plasmonic nanomaterials in photocatalytic and their recent applications in hydrogen generation, carbon dioxide reduction, and pollutant degradation.

Recent advances in nature-inspired nanocatalytic reduction of organic molecules with water

Hongli Sun¹, Wei Ou¹, Like Sun¹, Bo Wang², and Chenliang Su^{1,*}

- ¹ Shenzhen University, China
- ² Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, China

10292-10315

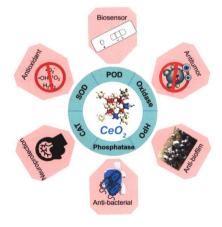
In the presence of nanocatalysts, the proton or the water can be reduced by the photocatalytically or electrocatalytically generated electrons to furnish reactive hydrogen species [H]s, which function in the form of powerful reducing equivalents (NAD(P)H, etc.) in semi-artificial systems. These reactive hydrogen species can efficiently assist the reduction of $\rm CO_2$ or organic molecules to synthesize green liquid fuels, and fine chemicals and pharmaceuticals.

Recent progress in single-molecule fluorescence technology in nanocatalysis

Jing Cao^{1,2}, Dezheng Zhang^{1,2}, and Weilin Xu^{1,2,*}

- ¹ Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, China
- ² University of Science and Technology of China, China

Single atom Shape Activation Surface atoms Single-energy molecule nanocatalysis HOR Super resolution imaging

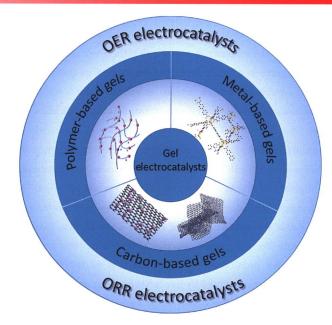

It is critical to investigate the catalytic activity of individual nanoparticles using *in situ* techniques. This review summarizes recent reviews in studying the catalytic behavior of nanoparticles at the single-particle level.

10316-10327

Insights on catalytic mechanism of ${\rm CeO_2}$ as multiple nanozymes

Yuanyuan Ma, Zhimin Tian, Wenfang Zhai, and Yongquan Qu^{*}

Northwestern Polytechnical University, China

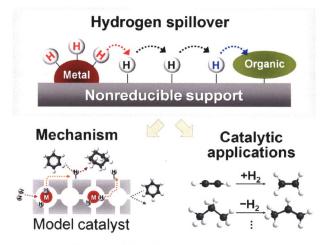


Defective CeO₂ nanocatalysts exhibit multiple enzyme-like activities, which are highly correlated to the reversible Ce³⁺/Ce⁴⁺ redox pair. Understanding catalytic mechanism under the catalytic conditions at molecular/electronic levels paves the way for their practical utilizations for disease diagnosis and treatments. This review focuses on the recent progress of catalytic mechanisms of CeO₂-based nanozymes and presents the perspectives on this rapidly developing area.

Progress on nanostructured gel catalysts for oxygen electrocatalysis

Huan Yang¹, Huilin Hu¹, Chenfeng Xia², Feng You¹, Junlong Yao¹, Xueliang Jiang^{1,*}, and Bao Yu Xia^{2,*}

² Huazhong University of Science and Technology, China

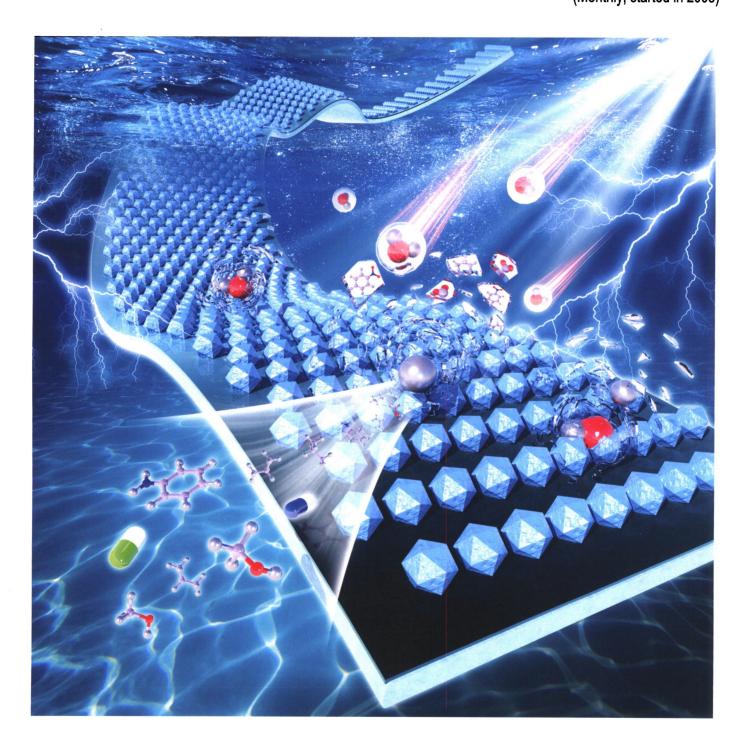

Based on the structure-activity-performance relationship of nanostructured gel materials, the development and application of polymer-based gels, metal-based gels and carbon-based gels as oxygen evolution reaction (OER)/oxygen reduction reaction (ORR) electrocatalysts are discussed and summarized.

10343-10356

Hydrogen spillover in nonreducible oxides: Mechanism and catalytic utilization

Songhyun Lee^{1,†}, Hyungjun Kim¹, Ryong Ryoo^{1,2}, Jeong Young Park^{1,3}, and Minkee Choi^{1,*}

- ¹ Korea Advanced Institute of Science and Technology, Republic of Korea
- ² Korea Institute of Energy Technology (KENTECH), Republic of Korea
- ³ Institute for Basic Science (IBS), Republic of Korea
- † Present address: Purdue University, USA



Mechanism of hydrogen (H) spillover in nonreducible oxides and the opportunities of harnessing H spillover for designing advanced hydroprocessing catalysts are discussed.

¹ Wuhan Institute of Technology, China

Nano Research

Volume 15 · Number 12 · December 2022 (Monthly, started in 2008)

北京地大彩印有限公司

纳米研究 (英文版) (月刊, 2008年创刊) 第15卷 第12期 2022年12月出版

Editors-in-Chief Yadong Li, Shoushan Fan 主管单位 中华人民共和国教育部

Sponsored by Tsinghua University & Chinese Chemical Society 清华大学

Edited by Nano Research Editorial Office 中国化学会

Published by Tsinghua University Press 李亚栋 范守善 Address Xueyan Building 《纳米研究》编辑部 Tsinghua University, 清华大学出版社有限公司

Website www.theNanoResearch.com & www.springer.com/journal/12274

Beijing 100084, China

Online Manuscript Submission, Review and Tracking System www.editorialmanager.com/nare