
第45卷 第2期 2016

HOLE WULD

月刊・1972年创刊 出版日期 2016年2月12日 2016年第45卷第2期

国家科技部 "中国科技论文统计源期刊" (中国科技核心期刊)

国家自然科学基金委员会数理学部资助 中国科协精品科技期刊工程资助

主 管 中国科学院

主 办 中国物理学会

中国科学院物理研究所

协 办 国家自然科学基金委员会数理科学部

中国工程物理研究院

主 编 朱星

副主编 杨国桢 朱邦芬 孙昌璞 张 闯

出 版 《物理》编辑部

地 址 北京603信箱,100190

电 话 (010)82649470,82649277

传 真 (010)82649029

广告业务 (010)82649277

Email: physics@iphy.ac.cn

Http: www.wuli.ac.cn

印刷装订 北京科信印刷有限公司

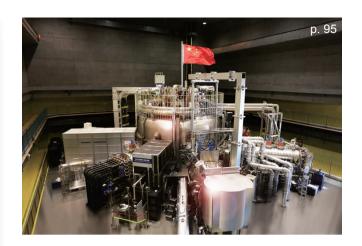
国内统一刊号 CN11-1957/O4

国内邮发代号 2-805

国内定价 20.00元

总 发 行北京报刊发行局订 购 处全国各地邮局

国际标准刊号 ISSN0379-4148


国外代号 M51

国外总发行 中国国际图书贸易总公司

(北京399信箱 100044)

广告经营许可证 京海工商广字 第0335号

© 2016版权所有

评述

73 CrAs——第一个Cr 基化合物 超导体的发现 吴 伟 程金光 維建林

The discovery of superconductivity in Cr-based compounds
WU Wei CHENG Jin-Guang LUO Jian-Lin

聚变能源专题

80 强激光实验室天体物理研究进展 李彦霏 李玉同

Recent progress of high-power laser driven laboratory astrophysics
LI Yan-Fei LI Yu-Tong

88 托卡马克研究的现状及发展 李建刚

The status and progress of tokamak research
LI Jian-Gang

98 基于现代加速器的惯性约束聚变物理 研究现状及发展 赵永涛 肖国青 李福利

The physics of inertial confinement fusion based on modern accelerators: status and perspectives

ZHAO Yong-Tao XIAO Guo-Qing LI Fu-Li

研究快讯

108 分子作用一小步,光电性质一跨步 ——有机共轭小分子晶体薄膜中存在半 导体本征光生自由载流子的实验证明 ^{翁羽翔}

物理攫英

111 玻璃态物理的若干方面 Facets of glass physics 闻平译

113 爱因斯坦与玻尔有关量子理论的 旷世争论宣告终结

Closing the door on Einstein and Bohr's quantum debate 石 云 译

物理学漫谈

116 一念非凡之薛定谔 量子力学是本征值问题 曹则贤

超导"小时代"

119 超导"小时代"之六 秩序的力量 罗会任

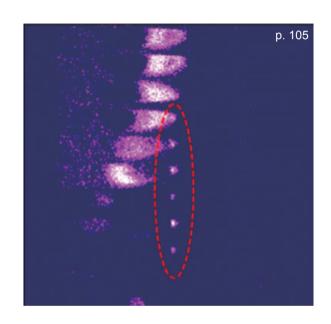
物理学讲堂

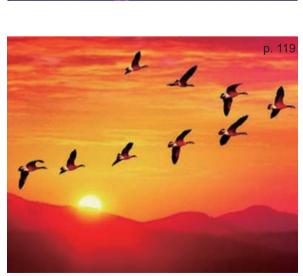
124 广义相对论与黎曼儿何系列之十 测地线和曲率张量 张天蓉

科学基金

130 2015年度物理科学二处科学基金 项目评审工作综述 李会红 蒲 钔 陈国长

书评和书讯


138 一本引人入胜的优秀科普书 ——读卢昌海的《上下百亿年: 太阳的故事》 ^{朱邦芬}

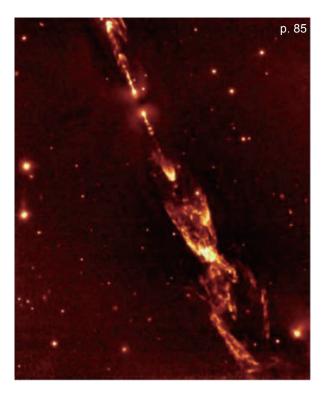

中国物理学会通讯

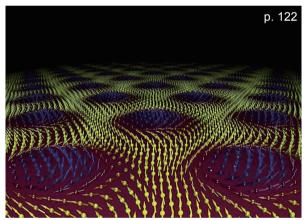
140 中国物理学会2016年活动计划表

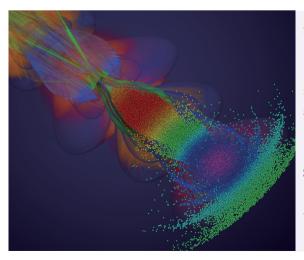
读者和编者

118 订阅《物理》得好礼

物理新闻和动态


- **127** *Physics World* 评出 2015 年度 **物理学 10 项突破性进展** 戴 闻
- 129 等待电子衰变 周书华
- 137 首次制成单原子厚的硼材料 周书华


招生招聘


143 南京大学物理学院诚聘海内外优秀人才 清华大学物理系招聘实验技术人员 首都师范大学太赫兹光电子学教育部重点 实验室长期公开招聘优秀人才 同济大学"声子学与热能科学研究中心" 人才招聘 半导体超晶格国家重点实验室诚聘英才

广告

Zurich Instruments(封二) 住友重机械工业管理(上海)有限公司(封三) 美国理波公司(封底) 北京汇德信科技有限公司(插1) Stanford Research Systems(插2、3) 北京优赛科技有限公司(插4) 北京鼎信优威光子科技有限公司(5) 北京三尼阳光科技发展有限公司(第79页) Advanced Research Systems, Inc. (第123页)

封面故事 等离子体尾波加速可简单用 "光速冲浪"来形容: 当超短超强激光或电子束在等离子体中传播时,会产生类似船划过水面的尾迹,即尾波,而在尾波中被加速的粒子就像冲浪者一样获得能量。这种尾波结构具有超出传统加速器千倍的加速强度,因而可以在很短的距离内获得极高的能量。2014年11月6日,Nature杂志以封面形式系统描述了美国 SLAC 实验室大型装置 FACET上高效率尾波加速的实验结果,并以 "Full Speed Ahead"来形容这一重要进展。该实验由 SLAC、UCLA、清华大学等单位合作完成,首次证实了清华大学鲁巍教授高效低能散加速相关理论(Phys. Rev. Lett., 2006, 96: 165002; 2008, 101: 145002),是尾波加速研究的重要里程碑。